DE
Things have become quiet in H2 mobility. At the cafe tables and also on Facebook, the topic of fuel cell versus battery-powered vehicles is discussed much less frequently and more subdued than it was two years ago, since it is gradually starting to sink in that hydrogen cars will not be available at...
In the field of flow measurement, the use of hydrogen, especially regeneratively produced hydrogen, as a process gas and energy carrier has become a focal point in many applications. Due to the need to use storage capacity efficiently, hydrogen must be stored under high pressure or in liquid state. Metrologically verified quantity measurement is needed for the low to high pressure range of gaseous and liquefied hydrogen applications. In addition, appropriate traceability chains to the SI system need to be established for the wide range of operating conditions in order to make valid statements about the measurement accuracy and stability of the flow meters used. The EMPIR project 20IND11 MetHyInfra addresses these challenges by providing reliable data, metrological infrastructure, validated procedures and normative support.
Gaseous or liquid hydrogen? It’s a dilemma facing everyone involved in the refueling of heavy-duty vehicles. It makes no difference to the power system whether the fuel is a gas or a liquid as the fuel cells can process the hydrogen regardless. In infrastructure terms, however, it’s another matter. The consensus among experts is that it’s not economically viable for fuel station operators to support every available technology in the long run. One alternative is cryogas, which is produced by cooling pressurized gas to extremely low temperatures or by directly compressing liquid hydrogen. Work is currently underway to deliver cryogas tank systems that will give a range of around 620 miles (1,000 kilometers), the CryoTRUCK project and the Salzburger Aluminium Group initiative being prime examples.
Commonly known is the ever-increasing need to transport energy from north to south within Germany. The rapidly expanding renewable energy generation capacities from wind in the North Sea and the onshoring of liquefied natural gas (LNG) or hydrogen at German seaports – whether as an international import or generated offshore – are further increasing this need.