Contact

Clean hydrogen on demand

By

November 16, 2020

Image titel:

Sources:

Clean hydrogen on demand

PowerPaste of the IFAM
PowerPaste, © IFAM

A few years ago, research at Dresden-based Fraunhofer IFAM’s Hydrogen Technologies department led to the development of a paste-like substance that can provide on-demand energy under well-controllable conditions for multiple kinds of fuel cell applications. In partnership with businesses and other research institutes, IFAM has since launched several projects to demonstrate that this substance called PowerPaste, the main ingredient of which is magnesium hydride, is both safe and easy to handle. The institute is also currently building a system to produce multiple tons of PowerPaste a year for use in field tests.

There already are well-established methods for producing hydrogen via hydrolysis, for example, by having water react with either calcium hydride (CaH2) or sodium borohydride (NaBH4). Around four years ago, H2-international first reported on PowerPaste (see H2-international, January 2017), a storage compound IFAM created based on magnesium hydride (MgH2). [Teg14]

Advertisements

The principle behind this kind of hydrolysis is always the same. When a metal hydride (MHn) reacts with water (H2O), it forms hydrogen and a metal hydride oxide:

MHn + n H2O à n H2 + M (OH)n

Advertisements

In the case of magnesium hydride, the equation is as follows:

MgH2 + 2 H2O à 2 H2 + Mg (OH)2

A few years ago, research at Dresden-based Fraunhofer IFAM’s Hydrogen Technologies department led to the development of a paste-like substance that can provide on-demand energy under well-controllable conditions.

Since this technique makes use of the water available during the reaction, it generates twice as much hydrogen as thermal decomposition, with half of that amount coming from the hydride. As a result, the method gives off much less waste heat than other production techniques during which a metal or a metal alloy reacts with water (or an acid).

The reaction, which takes place inside a hydrogen generator, is exothermic, which removes the need for external heat sources. The thermal energy that it generates can be used to heat buildings, among other things. Hydrolysis produces about as much energy as PEMs give off in the form of waste heat, i.e., approximately 1 kilowatt of heat per kilowatt of electrical output, at a temperature of around 80 °C. The most sensible course of action would thus be to devise a plan for the shared thermal management of both the fuel cell and the hydrolysis reactor.

When it comes to hydrolysis, magnesium hydride has several advantages over other materials:

  • Its specific energy is 6.1 kWh per kilogram, PowerPaste’s being 3.8 kWh. Even when factoring in fuel cell losses, the material provides much more energy than today‘s batteries, the gravimetric energy density of which is around 0.2 kWh per kilogram.
  • The magnesium to make magnesium hydride and PowerPaste is already available on the market in large quantities, at a raw material price of around EUR 1.70 a kilogram. Magnesium is also not a rare element but the third-most common in the earth’s crust.
  • According to IFAM estimates, even magnesium produced by conventional means will, over the longer term, lower the price of making PowerPaste to around EUR 2 to EUR 3 a kilogram. The levelized cost will be around EUR 20 to EUR 30 per kilogram at the point of use, including all expenditures for infrastructure and distribution. This reflects the full cost of production as opposed to artificial prices for hydrogen at fueling stations.

The above means that in many markets, including for UPS and light electric vehicles, the total cost of ownership will already be much lower than if the project involved putting up expensive hydrogen infrastructure or renting gas cylinders. The growing use of magnesium in light vehicle construction (CAGR: around 5 percent) also makes it likely that magnesium extraction will undergo significant changes in the next 10 years and become more carbon-neutral, energy-efficient and inexpensive.

read more in H2-international October 2020

Authors: Dr. Marcus Vogt, Felix Heubner, Dr.-Ing. Thomas Weißgärber, Dr. Lars Röntzsch

All for Fraunhofer IFAM Dresden

Kategorien: Germany

Here are interesting and current articles on the topic of hydrogen – stocks and the stock market!

Economic prospects for companies in the hydrogen sector | Future, stocks & hydrogen companies on the stock exchange and more…

Which hydrogen companies will prevail in the competitive market in the long term? Get tips and cartwheels and learn more about risks or opportunities. Our stock market specialist and expert author Sven Jösting reports critically, independently and competently.

Mar 18 2024

Search for the ideal hydrogen storage

Interview with Thomas Korn, CEO of water stuff & sun Startup company water stuff & sun has...
Mar 15 2024

Is exponential growth slowing down?

Fuel Cell Industry Review 2022 Year 2022 saw fuel cell shipments creep up over 2021 numbers,...
Mar 11 2024

On the way to becoming a green hydrogen partner

Oman aims to score points with H2 infrastructure Wind, sun and loads of expertise – these...
Mar 07 2024

We can master a scale-up for green hydrogen

Interview with Dr. Kai Fischer, Director at RWTH Aachen The efficient scaling of green hydrogen...
Mar 07 2024

Frustration over continuing uncertainties

Interview with Jorgo Chatzimarkakis, CEO of Hydrogen Europe There is a lot that needs sorting out...
Mar 05 2024

“If ever there was momentum for hydrogen, it is now”

Interview with Dr. Jochen Köckler, chairman of Deutsche Messe “We’re bringing people together.”...
Feb 28 2024

H2Direkt: Blueprint for heating with pure H2

The energy providers Thüga und Energie Südbayern (ESB) as well as Energienetze Bayern have...
Feb 26 2024

Just switch over?

Hydrogen in the existing natural gas network Whether hydrogen contributes to the clean heating...
Feb 26 2024

Pilot plant for coating bipolar plates

At Fraunhofer FEP (Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und...
Feb 20 2024

55 MW electrolyzer to decarbonize Saarland

Hydrogen Regions series: HydroHub Fenne living lab The power plant site in Fenne, Völklingen, a...
Feb 20 2024

Chicken feathers as FC membrane material

Feathers from chickens or other poultry could in the future help make fuel cells more effective...
Feb 15 2024

SMEs demand more security

Guest article by André Steinau, CEO of GP Joule Hydrogen After all, the Ampel Coalition leading...
Feb 15 2024

Accelerated expansion of renewable energies

RED III is here – Elsewhere, the wait continues Progress is being made at EU level – albeit...
Feb 12 2024

Picea 2 relies on lithium instead of lead

HPS presents new product generation The company HPS Home Power Solutions has unveiled a new...
Feb 12 2024

H2 production by photocatalysis

The direct generation of hydrogen from sunlight has long been considered the most elegant solution...
Feb 05 2024

Regional instead of international

Hy-Fcell has it difficult asserting itself The aspiration of Landesmesse Stuttgart with Hy-Fcell...
Feb 01 2024

Hydrogeit Verlag turns 20 years old

Hydrogeit Verlag is proudly celebrating its 20th anniversary as a renowned specialist publisher in...
Jan 26 2024

Stracke other H2Now managing director

BMV Energy GmbH is entering the market as another player in hydrogen refueling stations. The...
Jan 26 2024

Starting points for a comprehensive hydrogen ramp-up

Industry congress GAT 2023 in Cologne To establish a functioning hydrogen economy, the entire...
Jan 26 2024

The industry highpoint in autumn

Hydrogen Technology Expo total success In autumn 2023 as well, the Hydrogen Technology Expo was...

0 Comments

Leave a Reply