Contact

Hydrogen from Heat with Pyroelectric Materials

By

December 1, 2017

Image titel:

Sources:

Hydrogen from Heat with Pyroelectric Materials

Demonstrator

Demonstrator, © TU Freiberg

The conversion of waste heat into electrical energy could very well make an important contribution to CO2 and GHG emissions reduction and improve energy efficiency. A typical process chain will be based on a thermodynamic cycle, such as organic Rankine, a Stirling engine or a thermoelectric generator. A relatively new method uses pyroelectricity to advance both water electrolysis and power generation. This property of some materials has yet to attract much attention or research. However, considering global efforts to transform the energy market, its importance may grow over time.

Pyroelectricity is a physical property of crystal structures that possess a permanent electric dipole moment. Well-known examples of such materials include barium titanate (BaTiO3), lithium niobate (LiNbO3) and the polymer polyvinylidene fluoride (PVDF). A gradual change in temperature – for example, through adding waste heat – will cause positive and negative charges to migrate to opposite ends of the material and establish an electric potential. This potential can be measured by devices such as infrared thermostats, i.e., contactless temperature probes, or motion sensors, i.e., passive infrared sensors that detect heat emitted by objects and people.

Advertisements

How it works

A research team led by Tilmann Leisegang and Hartmut Stöcker from the Institute of Experimental Physics at TU Bergakademie Freiberg has developed a demonstration system that operates based on the above-mentioned phenomenon and can create hydrogen through pyroelectric means. It was first shown to the public at Hannover Messe last year (see fig. 1). The system, which was designed and built over the course of several research projects, uses barium titanate powder and low-temperature waste heat to split water into hydrogen and oxygen. First, externally supplied waste heat is led through a heat exchange into a secondary loop. Then, the water circulating in this loop is directed through a reactor containing the pyroelectric material.

Advertisements

The heating and cooling cycle causes a reaction in the water molecules on the surface of the pyroelectric material, splitting them into oxygen and hydrogen. A subsequent membrane separates the products of the split before they are stored away. This means that the pyroelectric effect makes it possible to convert previously unused waste heat into electrical and chemical energy. In turn, the hydrogen produced by the process can later be utilized in a variety of energy supply scenarios, for example, in hydrocarbon conversion or fuel cell power generation.

e-journal

Alternative to known methods

Methods to convert waste heat into electrical energy have been around for decades. One example is Ormat’s Rankine cycle, which uses organic heat transfer fluids instead of water. The advantage is that heat is transferred at temperatures lower than that of a water-steam cycle, which allows for lower temperatures throughout the entire process.

Compared to two-phase flow units that need to condense and evaporate fluids – from gas to liquid and vice versa – solid-state energy conversion systems have great appeal because of their simple and low-maintenance design. Thermoelectric materials operate based on the Seebeck effect, in which a usable electric potential is created by the generation of a temperature gradient in the solid. One company developing industrial-scale thermoelectric generators for waste heat use is Alphabet Energy.

Other uses

Pyroelectric materials can also be employed to convert heat into electricity. The electrical cycles that have been developed to create energy-efficient process chains [2] are akin to thermal ones, but are based on solid connections in which electrons are rearranged to create polarizations and thus energy. The process requires periodic changing of the temperature and polarization, for which several designs are available. The generated electrical energy can be stored or used to generate hydrogen [3].

Authors: Dr. Hartmut Stöcker, Professor Dr. Dirk C. Meyer

Both from TU Bergakademie Freiberg, Institut für Experimentelle Physik, Freiberg, Germany

Kategorien: Germany

Here are interesting and current articles on the topic of hydrogen – stocks and the stock market!

Economic prospects for companies in the hydrogen sector | Future, stocks & hydrogen companies on the stock exchange and more…

Which hydrogen companies will prevail in the competitive market in the long term? Get tips and cartwheels and learn more about risks or opportunities. Our stock market specialist and expert author Sven Jösting reports critically, independently and competently.

Apr 18 2024

Plug Power – Price jumps with many questions

The Plug share price fell quickly to under 3 USD (2.50 USD at low) and then rose again to over...
Apr 17 2024

Siemens Energy – Light at the end of the tunnel

Siemens Energy is on the right track, as the latest figures show. Although the wind subsidiary...
Apr 17 2024

Nikola Motors – Outlook speaks for the company

The press conference in February 2024 on the fourth quarter results and the entire year 2023 and,...
Apr 17 2024

Hyzon Motors – Strong patent position

Hyzon Motors will start production of 200‑kW modules for commercial vehicles in the USA in the...
Apr 17 2024

FuelCell Energy – Carbon capture as a growth story?

FuelCell Energy has with SOFC fuel cell power plants built its own capacities for clean energy...
Apr 16 2024

Hydrogen economy gaining speed

Trade fair guide for Hannover Messe 2024 AI and hydrogen are the focus of this year's Hannover...
Apr 16 2024

Politicians with an open ear for hydrogen

Optimism at the H2 Forum in Berlin A good 450 participants gathered at the specialist conference...
Apr 16 2024

Gas producers are the winners of the H2 ramp-up

The major international gas companies such as Linde, Air Liquide and Air Products have always been...
Apr 15 2024

Cummins Engine – Emissions scandal ended by payment

The share of Cummins Engine brings joy: The share price rose to a new high for the year, after the...
Apr 15 2024

Ceres Power with strong partners

The main shareholders Bosch and Weichai are already counting on the English Ceres Power and their...
Apr 15 2024

Group rotation will drive hydrogen forward

Sven Jösting’s stock analysis #Shares from the crypto universe and from many technology companies...
Apr 15 2024

Wissing releases former NOW chief from duties

Background to the Bonhoff/BMDV split Things had quietened down on the Bonhoff front. But then new...
Apr 11 2024

Bloom Energy convincing in the long haul

Bloom Energy is planning a cooperation with Shell to use its SOEC technology for the large-scale...
Apr 11 2024

Ballard – Prospects better than current market valuation

The share price of Ballard Power is at an all-time low. The published figures for the fourth...
Mar 18 2024

Search for the ideal hydrogen storage

Interview with Thomas Korn, CEO of water stuff & sun Startup company water stuff & sun has...
Mar 15 2024

Is exponential growth slowing down?

Fuel Cell Industry Review 2022 Year 2022 saw fuel cell shipments creep up over 2021 numbers,...
Mar 11 2024

On the way to becoming a green hydrogen partner

Oman aims to score points with H2 infrastructure Wind, sun and loads of expertise – these...
Mar 07 2024

We can master a scale-up for green hydrogen

Interview with Dr. Kai Fischer, Director at RWTH Aachen The efficient scaling of green hydrogen...
Mar 07 2024

Frustration over continuing uncertainties

Interview with Jorgo Chatzimarkakis, CEO of Hydrogen Europe There is a lot that needs sorting out...
Mar 05 2024

“If ever there was momentum for hydrogen, it is now”

Interview with Dr. Jochen Köckler, chairman of Deutsche Messe “We’re bringing people together.”...

2 Comments

  1. Clay Suddath

    Your thoughts are welcome regarding how the above process correlates with a projet by French McPhy in Lebanon:

    http://hugin.info/160013/R/2121507/808385.pdf

    Merely a press release, no in-depth technical information was available.

    Reply
  2. Hydrogeit

    You should ask directly at TU Bergakademie Freiberg.

    Reply

Submit a Comment

Your email address will not be published. Required fields are marked *